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TESTING DATA ABSTRACT iONS

THROUGH THEIR IMPLEMENTATIO NS

John Gannon

Department of Computer Science
University of Ma ryland

Col lege Park , M ar y L and 20742 C

A data abstraction Can be specified b y a syntactic (domain—

range ) descr ipt ion of its objects and operations on thee, plus a

set of axioms describing the behavior of the operations. in a

progr ammin g Language that supports abstr action, abstract object 3
are g iven a representation in term s of bui Lt—in data types (or

other , previ ousl y defined abstract ions ), and the abstract
operations are defined as procedur es. The impLemented

abstraction has a mean ing, acquir ed from the definition of the

pro gramming language; the axioms also specif y an independent

meanin g . The crucia l question is then whether or not either

meaning is “correct, ” that is , wh ether it corres pond s to the

desired abstraction that the programmer had in mind . Using a

finite collecti on of tests, the axiom meaning and the code

r m ean ing can be compared for consistency. A coepi Ler~ based

system , DAISTS , is described for, automatin g this process.

The , work reported here was supported by a grant from the Air
Force Office of Scientific Research —

~~~~ ~J•. • Computer time

was provided in part b~ the Com p uter Science Center of the

University of Mary land.
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The form al basis for data abstractions began wit h their

implementation in SI~ ULA classes tDahL 
~~~~ ~j, 1970), and Hoare~ s

correctness—based definit ion tHoare 1972) that has now become

kno ,~n as the “abstract mode l” app roach , refined into a program—

p rovi ng method by the A tpha rd group CWu (f 
~~ ~~~ 

19763. The

“p~.ire alg ebraic ” app roach (ADJ 1978, Gutt ag 1977, Zitt es 1975)

avoius both assertion—based correctness and imp lementation.

A l gebraic axioms may themse lves be used as rewriting rules to
- execute tria l expr essions from a data type. The OBJ (Goguen and

Tardo 1979] and AFFI R M (Musser 1979) systems use this idea to

mak e sp ecification s “executabLe ” without a conventional program

doing the computations. In these systems there is no data

abstraction programming Language, only a spe cification Language

in w hi ch sample term s can be evaluated by symbolic methods .

Our bias is toward practical use of abstractions, as
imp lemented in the programming language SIMPL.—D. This view

probab l y began with the MIT CLU abstraction project CLiskov

1976). However , a data— abstraction Language by itse l f face s the

pr ob lem of communicating what the iapt em ent stlon s mean. The

Iangua ,e n icet y gives the 
~~~~~~ 

of the abstract objects, but

their semantic s must be conveyed by commentary or by reading the

code. The former is unr eliab le, and the tatter violate s the very

reason for encap sulating abstractions in the first place. Also,
.iithou t an indep endent expression of the intended meanin g, we are
unable to judge mechanical l y the success of the imp lem enting
code, we thus decided that the usefuLness of SIMPL D would be

enhanced ~y the addition of spe cifications in a mac hi n e
p roc e ssab le form . The bias toward pra ctical progr amming remains ,

however, so wC decided to keep away from correctness ideas in

favor of testin g ideas. Our plan is to use al gebraic—e quati on
• specificat ions , and to test whether or not imp l ementing code

mee ts them.

• — 2 —  
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A~ immedia te difficulty is that such a view h as no
theoretical under p inning——the pure—al gebraic approach does not

consider independent implementation in a programming language,

and the abstract modet approach is intertwined with co r r ec t ness
methods. We must develop definitions appropri ate to our

situation, definitions in which the implementation is primary,

and “correctness ” is an Idea that a human being has, unconnected

with proof formaLism. The resu lting defini tion can be viewed as

th at of Hoare, with the assertion—correctness removed. We
cons ider It a unification of the algebraic and abstract—model

appr oaches, but from the algebraic side, unLike the effort of
(FLon and Misra 1919).

T h i s  report desc r ibes  the abs t rac t ion  programming Language
SIWP L—D (Section 1); defines the meaning of “Correc t
imp Lem entati on ” and “specification by axioms ” (Section 2); g ives
language and compiler extensions needed to support testing the

consistency of axiom s and code (defining DAISTS, Section 3); and,
exp lores the significance of successful tests (Section 4).
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S1MPL— D is a member of the S1MPL fami l y of pr ogramming

Lan~ ua~ es [BasiLl 1976) with features that permi t the declaration

~~ ab st ract data t ypes. This section first describes the basic

features that are common to severaL m em bers of the SIMPL fam ily

of languages and then discusses the features that are unique to

S I F 4 P L — D .

S 1M P L—D shares the following language features w i t h  some of

t he other Language s in the SIMPI family.

1. A pr ogram is a series of global variabLe decLarations

follow ed b y a series of procedure declarations. One procedure is

desi gnated as the starting point of e*ecution by inc luding its

nam e in a START command as the Last line of a program.

2. Th ere js no bLock structure and procedures may not be

nested. Each procedure may access gLobal variabLes , formal

pa rameters, and Loca l variables.

3. Procedures may be recursive. Procedures may not be passed
as parameters ; scala r data objects may be passed by vaLue or

reference and aggregates are passed by reference. Only scatar

objects may be returned as values. - -

6. The language is strongly typed with the basic data types

Integer,  cha rac te r ,  a~ d str ing. E x p l i c i t  conversion routines
exist to coerce values from one of the basic types to another.

Zero is faLse and nonzero is true in contexts requiring bootean

values (e.g., If statements ). The usua L arithmetic, relational,

and Logical operators are available. In addition , there are
string operators for concatenation and substr ing selection.

5. The only intrins ic type generator is the array of single

dimension w ith compile—time determinable bounds. The tower bound

for array, is flied at ze ro.

b. Th. statements of the Language include assignment, IF,

- 4 -
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CASE, WHILE, EXIT, CALL, and RETURN. There are primit ives for

s t r e a m  and record input and output.

7. Separate compi lation is supported using ENTRY and ExTernal

declarations.

The pr imary new feature of SIMPL D Is the CLASS. CLASS

decLarations define new types which may subsequently be used in

other declarations. The Interior of a CLA SS is a series of

variab le declarations (the represent ation ) followed by a series

of procedure declarations (the body). Either the representation

(by declaring a CLASS to be CLEAR ) or the procedures of the body

(by Listin g them in the CLASS heading ) may be visible outside a

CLASS decLaration. A CLASS with no procedures associated wi th it

and whose representation Is avaiLabLe to users is simpLy a

record. Conversely, a CLASS whose representation can only be

accessed by users through the procedures of the CLASS dtfines ar~
abstract data type.

Users generaLLy view CLASS objects as indivisibLe entities.

Inside the CLASS , these objects may be viewed as a sequence of

declarations of more pr imitive objects. The primitive objects

may be declared with one of th, storage attributes UNIQUE or
SNA R ED.

CLASS Stack = Push , Pop , Top, Empty

1* repre sentation a,

SHARED INT ARRAY VaLues (1000)
SHARED INT A R RAY Ne*tvalue (1000)
SHARED INT Avai t
UNIQUE INT Stac ktop

1* body a!

.

.

£ ND C LA SS

— 5 —
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UMI QUE components of a CLASS are allocated each time a CLASS

object is created , SHARED components of a CLASS are allocated

only once (no m a t t e r  how many CLASS o b j e c t s  are c rea ted )  at
pro gram initiation and are common to aLL objects of the same

type. In the example above , each Stack object consists of a

siri~ Le integer component, Stacktop. The vaLue of a Stack object

might be constructed by using its Stacktop component as a

referen ce to a Linked List whose Links are stored in Nextvatue.

The Lin ks in Nex tva lue reference positions in the integer arra y

Values tha t contain the values currentl y the List. ALL Stack

objects share the common space for values and (inks; no Stack

object need overfLow until the storage requirements for alt S t ac k

objects exceeds 1000 values.

The body of a CLASS is a series of procedure and function

declarations. If o~ e of these routines accepts a form at

p arameter of the CLASS being defined, the body of the routine may

access the UNIQUE components of the forma L using a period

notation simi lar to that of Pascal or PLII. Since onLy a single

cop - of the SHARED components exist, no similar qualification Is

necessary to access them. Continuing our example from above, we
sight define Pop as folLows:

Stack FUNC Pop (Stack S)

INT Temp

IF Empty (S)
THEN

WRITE ( *** under ftow * * * )
ABORT

END

/ a  put locat ion of previous value in Stack top  *1
T~~ P : S.Stacktop
S.Stacktop :“ Nextvatue (Te.p )

Accession For

1* update chain of avaiLabLe locations */  NTIS Gi~A~&I
• Ne*tvalue (Temp ) : Avail ~DC TAB

Avai l :z Temp Unennou•~ced
Ju~~t i f 1c t i O f l_

• RETURN(S) _____

— 6 —  ~~
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A Li st of integer parameters to the CLASS may be used to

control the sizes of the UNIQUE components of the representation.

These parameters are themselves treated as UNIQUE components of

an object, but their values may only be altered by the assignment

of an object to the entire object of which they are a Component.

CLASS Stack (Stacksize ) = Push , Pop, Top, Empty

UNiQUE INT ARRAY Vatues (Stacksize)
UNiQUE INT Stackto p

.

ENDC LASS

The appearance of the reserved word ASSIGN in the operation

L i st enables the SIMPL assignment operation (:) to be app lied to

objects of this CLASS type. As is the case w i t h  objects having

primi t ive SZMPL types, applying the assignment operati on to CLASS

objects results in the value of the right operand being copied to

the Location of ~he Left operan d. If the run—time value of the

ri ght operand is too Large to store in  the left operand, an error

results. Assignment is not allowed for classes containing SHARED

components because of possible side effects on shared components.

Two nameless procedures are available to provide automatic

in itia tizatjon of UNIQUE and SHARED data of a CLASS. SHARED

components are initialized once at program initiation through an

• i m p L i c i t  caLL to the appr opriat e nameLess procedure. UNIQUE

objects are initiaLized at the time of their creation (either
pr ogram initiation for globat s or procedure invocation for

Local s) through an imp Licit caLL to the appropriate nameless

procedure. The CLASS defining the type Stack above might contain

such a procedure to initi alize Stack objectS to be empty.

1NIT UNIQUE PROC (Stack S)
S.StackTop : —1

Declarations estabLish the types and sizes of variables, but

the size of a variab le is not part of its type. Size parameters

— 7 —  



cannot ue specified in the declarations of formaL p a ramet e r~ or
function results ; th~ se objects have sizes that cannot be

determined unti l run time. The size vaLues of formaL parameters

are those of the corresponding actual para .eters. The size value

of a function result is that of the expression appearing in the

return statement. Thus objects of arbi trar y sizes can be passed

to , and returned from , routines. in the folLowing exampLe , SI

and S2 .are variabLes with the same type (Stack), but different

sizes (s O and 5 respectiveLy ).

• Sta ck (50) Si
Stack (5) S2
.

Si : Pop(S2)

The foLLowing is a fulL definition of the data type “bounded”
Stack and its use in a SIMPL— D program. The operations avai labLe

on Stack objects are Listed in the CLASS heading; the code
implem e nting these operation s (except for ASS I6N which is system—

defined ) Is found In the CLASS body. Push pLaces a new value on

top of a Stack object and returns the object as the result of the

op eration . Attempts to place a new value on a ful l Stack object
are i gnored. Pop removes a vaLu e from a nonempty Stack object

and has no affect on empty Stack objects. Top returns the vaLue
on top of a Stack object, but does not remove the value from the

object. Top returns Undefined (In this example , Un de f i n e d i s 0
as a result of the macro defini tions controlLin g the

representation.) if it is app Lied to an empty Stack object.
NewS -tack returns as Its vaLu e an empty Stack object. Depth can

be used to discover the numb er of values in a Stack object and

Lim i t g ives the upper bound on the number of values that can be

p l aced in any Stack object. An array of ELtType (defined as
inte ger by a ma cro ) values and an index of the Last vaLue ,

Stac klop , form the repre sentation for Stack objects. Each time a
Stack Obje ct is bound to storage, space is reserved for the array

and integer index.

— 8 —



CLASS Stack Push , Pop , Top, Empty, NewStack,
StackEqua l , Depth, Limit, ASSIGN

/ - ~ macro de fini tions to co ntro l representation ~/DEFINE EttTyp~ =

DEFINE Undefined 0
DE F INE StackSize 20

/* representation */
UNIQUE Ettiyp e AR RAY VaLues (Stac kSize ) 1* O ..StackSize— 1 •/
UNIQUE INT StackTop

/* body containing operation definitions *1

Stack FUNC NewStack
Stack ResuLt
Res utt.Stac ktop : —t
REIURN (ResuLt )

Stack FUNC Push (Stack S, EttType Elt )
Stack Result
IF S.StackTop 4 1 = StackS -Ize

THEN
RETURN (S) /~ return stack unchanged */

END
Resu lt : S
ResuLt .StackT op :~ ResuLt.S taçkTop 4 1
Result .Wa (ues (~e sut t .StackTop ) : [(t
RETURN (Result )

Stack FLINt Pop (Stack S)
Stack Retu Lt
IF Empty (S)

THEN
RETURN (S)

END
Resu Lt : S
Resutt.St ackTgp : Resu (t .StackTop — 1
RE TURN (Re sut U

EltT yp e FUNC Top(Stack S)
IF Emp ty (S)

THEN
RETURN (Undefined )

E N D
RETURN (S.Va(ues (S .Stacklop ) )

OooL FUNC Emp ty (Stac k S)
RET LI RP4 ( S .St ackT O P = — 1 )

— 9 —



BooL FUNC Stack EquaL (Stack P, Stack Q)
1 N T  1
IF DepthCP ) Oepth (Q )

THEN
I : Depth (P)
WH ILE I ) 0 DO / a  co mp a re  a l l  e l e m en t s *1

IF P.Vatues (I) <~ Q.Values (I)TH E N
P ETUR N C Fa I se)

E N D- 
I : I — 1
END

RETUR N (irue)
E N D

RE TURN C Fa Lge)

INT FUNC De pt h ( S t a c k  S)
R ETU RN ( S . S t a ck lo p  + 1)

1 NT  F U N C  L imit
RETURN (S tackSi ze )

EN DCLASS /a end of declaration of CLASS Stack *1

PR OC P 1* p r o g r a m  us in g variab l es 0f type Stack *1

I N T I
S t a c k  S
S : N,wStack

1* read and add values to 5 .1
WHIL E .NOT. L O X DO I~ EOI is end—of—input a!

R E A D  ( i)
S := Push (S,1)
E N D

g’* write and remove values from S a!
WH ILE .NQT. Empty (S ) DO

WR ITE (Top (S) ,$KIP)
S : Pop (S)
E N D

S T A R T  P

— 10 —
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A Language Like STMPL D supporting data abstraction defines

abstractions using a collection o f  its primitive objects and

pro cedures. Because the Language has a formal semantic

definition , these elements have an intuitive meaning, roughly

that the primitive objects correspond to some abstract objects

~~~~~ strings over some finite alphabet, or natura l numbers ),

an d the procedures to mappings among the abstract objects. An

imp lem entation of a data abstraction therefore has meaning,

constructed from the Language—def inition meanings of the objects

and procedures used. The question is whether this meaning

corresponds to what a human being had in mind for the abstract

object , we begin by framing a simple definition that captures

this Idea .

Suppose that the pr ogramming Language has but a single

pr imitive type , whose meaning is a set of abstract objects D
(In the usuaL “structured programmin g ” treatment CLinger 

~~~~~ ~li
1979) the objects D are the integers, the me a n i n g s of program
variabLes of type jol.) The meanings of procedure s are mapp ings

of cross prod ucts of D Into cross products of D • (To obtain
a tup Le of outputs It may be necessary t~ resort to “Output

parameters ”; in a Langu age li ke ALGOL 68 such objects may be

func tion values directly. ) The semantics of a programming

~avi~ uaye can be thought of as the definition of the meaning
m app ing: an assignment of the abstract function to the procedure

fragm en of the Langu age syntax . Because it is important to know

when such an abstra ct function i~ under discussion , we name them

w i th .a peculiar notation due to K (eene : ~‘ue meaning function of
the program fragme nt P is written IP] • Thus for a function
procedure P with two parameter s,

(P): D a D “)  D

is the meaning. The semantic definition of the Language

establishes the detailed correspondence between P and EP)

- 11 —
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*e say that ~ £QRQ~~t~~ 
(P) • The crucial point is that by

usin g the language de finition we can discuss not P , but IP]

and thus deaL onLy with abstract , intui tive, meaning objects , not

conc rete , syntactic ones.

L. I’~ this discuss icn we have n0t commi tt ed to whether or not

the c emantic domain b is finit e. In any actua l im p Lementatio n

i~~ ‘r~~st be, but there are good reasons to take it to be in

j)rin p Ie unbounded as Turing did. In fact , data abstraction

its e~~f can be used to bri d ge the gap, because potentiaLL y

u nIi ~~it ed objects (Ike strings can be impLem ented as character

arrays using dyna mic memory all ocation, the ultimate Limitation

be in y onLy the exhaustion of virtual memor y.

The domain of a data abstraction is like D , except that it

d o e s riot correspond to any built—in programming—language objects.

Fc r  r i m p t i c i t y  let it be a single kind of abstract objects, say

t - e  e t  A • Let the objects D play the dua l role of meaning

b r  . ro grammin g Langu age primitive Objects, and a second abstract

d o m a ~~n for oppositio n to A • The abstract operations are

~i~.,ppings from cross products of A and D into A or D

(The com p Lication of p ermitting cross product ranges here adds

nothin g.) The abstract operation s also have no built— in language

proce d ures. The data abstraction features of the language

pro v ide a means of defining Langua ge—to—ab stract ion

correspondences . In the simple case we are considering, the

abstract objects A are made to correspond to tuptes from P ,

and -‘ostract operations to pro cedures mapp ing these tupl es. That

i~~, the pro grammer irp lem ent-In g an ab stract ion mentally

e st dtJli sh es a £{g~~~ I~&1~o mapping P

k
R: 0 ———> A (onto)

carryin g the buiLt—in meanings to the desired ones. This mapping
- is reflected in the Language by an ordered collection of

declarations. In SIPPL—D these are the decLarat ions of a CLASS

in o rde r,  so that

— 12 —
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C L A S S  C =

UNIQUE INT a~ y , z

• . .

woul d estabL ish the represen tation as having a domain of tripLes

o f  (abstract) integers . Note that in this view the

impLementation synta x ~~fjg~~ the abstraction doma in , so that no

abstract syn ta x is needed in addition; however, the object such a
tri p le Is to represent is entirely unspecified.

Simi larLy, the data abstraction facilities of the language

aL low definition of Language procedures that correspond to the

abstract operations, arid the Language syntax define s the abstract

domains and ranges. For exam p le , in SIMPL—b if there were just

one operation carrying a pair of abstract objects into the
Lan guage — primitive objects , we would have

CL A SS C op

UNIQUE INT x~ y , z

INT FUNC op (C a, C b)
• .  .

in w h i c h  the CLASS name C Is used to stand -In for the
repr esenting tri p le in the parameter List . Again the syntax

carries over to the abstraction, but there is no meaning given
the re.

Because of the w a y  this syntax is constructed, It is

impossib ’e to write a syntact icaL ly correct SI~ PL O  progra. that

doe s not imp lement ~gg~ abstraction, so we make this the first

defini tion: an i!Qite~o1I1iQn of a data abstraction is just a

repr esentation and a collection of function declarations. The
impLementation defines the syntax of the abstract object and

abstract operations.

Once programming language code has b een f i l l e d in for the
functions decLared in an imp lementation of an abstraction, one
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mean in g j~ defined , by that im pLementa t i on through the Language~ s
semanti c definition. But the progr ammer Is supposed to h ave  an
abstrac t meaning in mind 

~ g~ j g~j, so we now define what it mean s
for this Intuitive idea to be captured by the cod,. it is cLear
that we should assert that the given program—indu ced meaning is
the one intended . For example, in the case of a representation

R: D a 0 A

(that Is , pairs) , and an abstract operation

f: A a 0 ———> A

impl emente d by a procedure P (in SINPL—O it wouLd appear as

CLASS A = P

UNIQUE INT a, y

* FUNC P(A u, INT a).. .
i f the pr imitive type P is INT), the code repr esented by the
body of P define s CP) as a mapping

2 2(P): P a P ———> 0

Corre ctness of the implementat ion then amounts to the asser tion
that the foLlowi ng diagram commutes:

I

A x p —— .~~~ A

~~~ 
‘2 

-

we C a ll this an suolalloo d1i~cii of P • Z n general, the
implem entation i s  çg~~~ ç~ 1ff each of its functions satisfie s
t his condition ; namely that any representati on tupte, carried
Into th, abstract A by P and mapped by th~ abstract

— 14 —
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operation , produces the same (abstract ) vaLue as mapping that

representation tuple by the impLementing procedur e, then

representing the result. In symbols, for the example,

2
correctness requires that for any pair (s,t) S P , and any a S

f(R (s,t), a) = R((P](s, t, x))

(In the speciaL case that P itself is a part of the abstract

domain , we require that the identity representation be used, and

we do not show it In the implementation diagram.)

w e emp hasize again that this definition is framed entire Ly in

the abstraction s P , A p f , and CP) • Of course, there is
a correspondence with the language object P through (P] , and

the tupLe s from P have Language corresp0ndentg, but these do

not occur in the definition. Note also that the abstract syntax

comes entirel y from the implem entation syntax——it has no
independent existence, and the abstract meaning is so far

confin ed to the mental processes of human beings.

Side effects of the implement ation can also be discussed in

this context. IntuitiveLy, the impLementation has side effects

if executin g its procedures not only yields their returned
vaLues , but furthermore alters the state of some internaL

storage. in SINPL D, “internal storage ” is the SHARED and UNIQUE

data of a CLASS, which we are treating as a tupte of objects from

the set P • In framing a definit ion of ‘side effect, ” should
ajL storage within the impL ementati on be In the domain of the

intu itiv e representation function, or should some of it (say the
SHARED part ) be in a hidden, “side—effect ” store? We choose to

IncLude everything In the repres entation domain , b e caus e it
preserves the intuition that thi s mapping captures the entire

correspon dence between implementation objects and abs tract ones,
a nd because the resulting mathem atics Is cleaner. (As an example
of the Latter , thi imp lem entation diagrams explicitly show a ll
the rele v ant data. )
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IntuitiveLy, there is a side effect if storage is different

after a procedure has been Invoked than it was before. To

capture the idea of a time histo ry, we consi der an g
~~

g
~ ft~

~~~~~~ that displays a succession of

implemen tatio n procedure Invocations. For example, for the

operation I; A a P —— ) A above, the implementing P mig ht be

used on -its own output, Leadin g to the diagram:

- f I

A x  0 ——— > A a P ) A

a a

N P
(P3 tP]

2 2 2
0 a D — — — >  P a P “>  0

(In the diagram we omit not only the identit y map 0 —)  P , but

2
the internaL N : P —— > A • )

Forma lly, there is a ~j~ç ~~~~~~ 
in a seque nce of

im p lementati on procedures -1ff an extended imp l ementat i on diagram

exists with the folLowing property: Starting at the upper left ,
some abstract a is the image under the representation P of

the set (of tupLes)

E — -Cd I R (d) z 5) •

Some a S E Is carried along the bottom of the diagram back

into E by the impLementa tion procedures in composition.
However , there exists a y S F that is carried along the bottom
of the diagram to y distinct (as a tuple) from y • A side
effect is ~~~g gjg~~ 1ff every such y S F

The intuition behind this definition (following (Hoare 1972])
is that “side effect is m eaningless un less the extended

Im p lementa t ion diagram returns to a representation of th, same

abstract object. That is, the notion depends not just on the
imp lementing code, but on the representation that the programmer
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had in m ind. So long as extended implementation dia grams produce

Sequences of representatio ns of 
~11fttt~i 

abstract objects, the

effect is pr imary, not “side ”. When there is a return to the

same a ra t o -e t, but w ith a differ ent representing tupLe, a

side c-f ct has occurred. BenevoLence means that such changes do

not matter——the representation mapp ing washes them out. The

somewhat surprising thing -Is that -In any abstraction correct ly

imp lemented by given code, any side effects SMII be benevolent ,

hro w in g an interestin g highli ght on Hoare~ s contention that the

terms are aLmost contradictory. For suppose that a side effect

is not benevolent ; that is, for some extended implementation

diagram a set F of impLementation tupLes repr esenting the same

abstract object is mapped partLy into itself , and partly into

representations of another abstract object. Choosing one

representing tupLe of each kind at the Lower Left of the diagram,

on the upper (abstract ) p ath they Lead to the same object, but on

the lower (implementation ) path they do not. Hence the

impLementation cannot be correct.

When the representation mapp ing is 1—1 , side effects are

impossib le accor ing to this definition. There are no classes of
repr esenting tuptes othe r than singletons, and so the benevolent

confusion within such a class cannot occur. The usual notion ~f
a “side effect” that Is ~~~ benevoLent is formaLly just an

inc orrect impLeme nta tin ’~ .1 the object y that is sent to y’

~ 
y by the code is one that dispLays a side effect , and

procedure o mis behaves ‘ ‘ where it would not have
“isbehaved on y , there - - ~

- wo possibLe cases according to the

formaL definiti on:

(1) The si4e effect in the extended diagram prior to the

pp Lication of 0 is benevolent ; that is, the representation
doe s n t distinguish between y and y # • T hen 0 it seLf  is
incorrect.

(2) The side effect is not benovetent; that is, the
representation maps y and y # onto different abstract objects.

— 17 — 
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Then somewhere in the extended diagram prior to the application

of Q there is an error In the implementation.

The situation regardin~, side elfe cts can be summarized as

foLLo .s: correctness of ar implem entation (as defined by

comm uting implementation ciagrams for aLL its procedures )

;uar antees that aLL extende d implementation diagrams will aLso

commute.

According to the definition above , the Implementation fixes a

synta x——the sets of objects, and the names, domains, and ranges

of operations. T h is  syntax is called the g~jj~~g of the

abs tr dc tion, as in C~ 0J 1978]. We now investigate the structure

of aLl abstraction s with a fixed signature . For any two

abstractions * and * with t h e  same signature, a
1 2

h o r n o M o r g h I ~~rn h: * 2 
satisfies equations such as

h (f(*,y)) = f(h (x),h (y ) )

far aLL  x~ y in the domain of I in *1 ~ 
for alt operations

I of the signature (with appropriate argument Lists——here shown

as pairs). We use the same name for the operation f in both

abstractions. *n onto homomorphism is an jg~~~~j.~g; a 1— 1

ep Im or~.hism Is an IIc!grgblil. We say that *2 
is a homomorphic

(ep imorp hic , isomorphic ) i!s~t ~~ 
~~ 

(under h ). Identifying

all isomorphi c abstractions, define a partial order by h
i £ *2

is an ep im orph ic image of *2 
The trivial abstraction

•~ containi n g one element m 3pped to Itse L f by aLL operations Is

the Le ,st element in this partial or.~ering.

- When a person sets out to imp l ement an intuitive abstraction

in a pr ogramming Language Like SIPPL—D, he proceeds by first

choosing a represen tation, then writing code to manipulate its

tup Les appr opriateLy. However , given a SIMPL D CLASS definition ,
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it may imp lement certain abstractions correctl y, whatever the

p r ogr amme r had in mind . One candidate is always the trivial

abstraction. in that case, whatever the programmer writes for

code is correct if the procedures do not abort or fail to

terminate , because every tiapL e is mapp ed to the same abstract

point. If the trivial abstraction is not what the pr ogrammer had

in mind , it Is tempting to say that the representation is

i n co r re c t ,  but according to our definition that distinction

cannot be made——the  range of the representat ion mapping Is
e n t i r e L y in tu i t ive.  Another  intui t ive abst rac t ion a lwa y s
correctl y implemented by any code is one that mirrors the

imp l ementation itself. That is, the representation is an
identity map, and the intuitive operation corresponding to
procedure P is just (P) • In this case the top and bottom

Lines in the implementation diagram are identica l , so it

necess ariLy commut es. (Here even the possible failures of

termination in the code are of no consequence.)

Between the trivia l abstraction and the one that a rror$ the
imp lementation , aLl eLements of th, partial ordering are

Co rr ectl y imp lemented, because given any A that is an ima ge of
the mirror—imag e abstraction under a homomorphism h, h itseLf is

a repr esentation onto * that forces the appropriate d iag rams to
commut e . It is LikeLy that the successful programmer had some
eLement of this p artial order in mind , but probably not the

ex tr eme elements. Insofar as the implementation takes advantage

of the full detaiL of the representing tuples, the abstractions
it corre ctl y implement s ar e like ly to cluster near the

im p lementation—mirror end of the order; if the representing

structure is Largely ignored, near the trivial end.

T h e  definition above captures implementation of an •
abstract data type . If the human being who envisioned the type

is available to act as an orac le, and can perform the
representation fun ction , then the definition can be used directL y

to perform tests of the impLementati on. The person chooses a
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repr esenting tup le, maps it to the corresponding abstract object,

perf orms abstract operations and records the result. Th,

im pLementing program is given the same representing tupte and

produces another such tuple ; the human being also maps this to

its corresponding abstraction and compares it wit h the recorded

resu lt. Agreement means a successfuL test. This process cannot

be automated without some form of specification that describes

the ab stract type independent of the imp lementat Ion . We h ave
chosen aLgebraic axio ms (Guttag 1977] as the most attractive such

specification method. The exact form the axioms take can be left

open ; in  particu lar , we have not decided the several questions of
(a) whether or not the functions involved must be total (and

hence the form recursions are aLlowed to take), (b) whether or

not existentia l quantifiers wiLL be allowed as welt as universa l

quantifiers, and ( C )  whether of not “conditional” c ases w ill be
all ow ed in the axioms. Our testing sc h eme wilt work in any

com bination of decisions about these matters, so the decisions

can be deferred .

whateve r form the axioms take, they are a finite collection

of relations among term s constructed from abstract functions,
closed by quantifying the variab les. An intuitive abstraction

~~~~~~ a set of axioms 1ff each is true In the natural

interpretation into the intu itive domain (in the technical logic

sense). That Is, the intuitiv e axiom relation holds of the

intuitive term objects. Given any point in the partial order of

ab stractions satisfying a set of axioms, points below it In the
p a rtial order also satisfy them , because the epim orph ism that
ma p s ~Jownward in the par tial order commutes with all the

operations, and this is suff lci em t to show that the axioms are

inhe rited. We report more results on the relationship between

the imp lem ented abstraction s and the specified abstractions In
(Ard is and Ham let 19793.

Given a S1MPL D CLASS and a set of axioms written in terms of

its operation names, there are thus three things of interest
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w ithin the pa rtiaL ordering of abstractions:

(1) The abstraction the programme r had in mind.

(2) The set of abst ractions that the code correctly

imp lements.

(3) The set of abstractions that satisfy the axioms.

i f  it - happens that 1 is somewhere in (2) and also in (3), the

pr ogram m e r Can be said to have succeeded. (However, more could

be demanded. Some of those taking the algebraic—axiom approa ch

o ften require that (1) correspond to the initiaL eLement of (3),

viewed as a category (ADJ 1978]. We do not insist on this

additionaL condition , aLthou gh we wou ld be pleased to be able to

detect tha t it is satisfied. ) There are many ways for the

programm er to faiL, however. Since (1) does not and cannot
appear e x p LicitL y in the S1UPL—D text, technically we can only
investig ate the relationshi p between (2) and (3). However, both
code and axioms are human attempts to capture (1), and they are

sufficiently different that we may hope their relationshi p wI LL
i Llum i nat e their common source, even though it is not formal Ly in

evid ence.

Testing is the me chanism we have chosen to investi gate the
rel at ions h ip betwee n axioms and code. Test points in the form of
imp Lem entation tuptes can ~e inserted in the axioms viewed as
expre ssions in SI~ PL—D . This amounts to associating with each
axiom its extended im p lementation diagram, and moving across the
bottom of the diagram. Since the outermost function in each

axiom is equa lity, and since the representation mapping into the
Boolean dom ain ~~~~~~ ~gj ~~

) is Like ly to be one—one, we can
view the test as supp l y ing half the information about
commutativ i ty for one point .

Let us suppose that such a test fails. That is, some
representation tuptes are chosen, the appropria te value s that

occur in an axiom are worked out (in Imp lementation tuples
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alain ) , and the resulting value represents tu ft. Then if the

axiom does hold for the intuitive abst ract objects, the

Im p Lementation must ~e incorrect (in the technical sense above),

and its failure Lies in one or more of the procedures whose names

appear in the axiom. Since the axiom hol s of the abstract

ot je cts , the test point must Lead around the upper path of the
I—

extended impLementation diagram to ~~~~~ but , the lower path

leads to ~~~~~~ This can occur onLy if one of the component

implementation dia grams simiLarly falLs to commute. It is

imp ortant to note that nothin g is assumed about the specification

“capturing ” the intuitive abst raction except that a singLe axiom

is tru e of it.

Th ere IS an excep tion when an axiom uses existential

quantifi cation. Then the additional p ossibility exists that th~
code is not incorrect , but rather the data points used are so

sparse that no representation of the needed object was included.

Furthermore, an existential failure Is over a whoLe set of

p oints , and not for a singLe point , thus making it harder to

trace. Perhaps these are sufficient reasons to avoid existentiaL

quantifi ers in axioms.

Unfortunat ely, a successful test give s Less information: if

the axioms define the abstra ction , and the impLementation

sat i s fies them for a point , it could yet happen that several of

the Imp lemented funcions are not correct for the point, but in

com oi nat ion their errors canceL each othe r to make the te st

succeed. The case of an existentiall y quantified axiom is again

noteworthy: the existence of a tupte that satisfies the axiom

may be illusory If the procedures imp lementing the operations on

it are incorrect. We do not expect tests to establish the

correctness of the implementation, but the success of a test when

the code is wrong for the test inputs is particularly disturbing.

This difficulty can occur even with e x haustive testing, and even

- if the equaLit y function of the abstraction is correctLy

implemented. Intuitivel y, it arises because the definition of

— 22 —



/

correctness (folLowing Hoare) proceeds functio n—by—function,

w hiLe the aLge li raic —e quat ion specification may only define the

oper ations in combination . Of course, the success of an axiom

involving only one operation , under exhaustive testin g and

assuming a correct imp lementation of equa lity, is definitive.

we do not contemplate exhaustive te sting, but we do want to

know that an incorrect implementation 
~giic~is~ 

a test point that

exposes its error. with the coverage criteria described in

Section 4, we can then measure the L i kt ih oo d that a given set of

tests include the crucial points. if aLL tests might succeed ,
yet errors remain , our  testing scheme is on shaky ground.
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!• ~~j~~: ~~!~ k— ~ wIl b uQ~ It*L)
Axiom s and test cases can be appended to a SIMPL O CLASS as

ae fined In Section 1. The form is:

- 
. SIMPL— D CLASS definition
.

A XI OMS
•

• algebraic axioms describing the abstraction

TESTPO1NTS

declaration and initiaLi zat ion of test vaLues
.

TESTSETS

sets of test points to be used with each axiom

START

we ca ll the resultin g system DA ISTS for exactly what it is: ~ata

~b str a ct 1On ~mp &e.entation , ~peci ficat ion , and Iesting system .

In the AXIOMS section each axiom has a name , an op tiona l free

variabLe List containing the types and names of each free

v ariable used In the axiom body, a coLon, an axiom body, and a

terminating semico lon. The axiom body has the f orm:

<Left side> (right side)

where either side may contain references to free variables

and operations. In addit ion , the (right side) may contain a

conditional expression Like that of ALGOL 60:

IF <bootean ) THEN (exp> ELSE (exp >

One of the familiar axioms of the bounded stack CLASS

app ears as:

Pop2 (Stack S, EltT y pe 1):
Pop (Push (S,I)) IF Depth (S) Limit

THEN Pop(S)
ELSE S;

This axiom te lls us that the result of popping a Stack S after

push ln~ a new value I onto S is the same as either:
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1. the va lue of the object obtained by popping S (If S

at .rea dy contained the maximum number of values before the pus h ,

at t e m p t s  to push a new value on S wouLd be ignored.), or

2. the value of the ori g inal Stack S otherwise.

T he TESTPO INTS section Looks L ike a ~IM PL—D procedure,

c cm ~~Le te w i t h  LocaL declarations and executable statements. This

sc~c ti on has been incLuded to allow users to build objects to be

referenced in the TESTSETS section of the program. An object

th at is expensive to construct can thus be used in testing

s~~ er aL axioms without rep eating its construction. For exam p le,

a useful point for te sting a bounded Stack might be obtained as:

S t a c k  Si
S i :: Push (Push (~ us h (NewStack ,1) ,2),3)

The TESTSETS section of the program contains a List of axiom

names w i th values to be substituted for the free variables of the

ax ioms. For example, a three—element test set for the Pop2 axiom

is:

Pop?: (NewStack, 1), (51,2), (S1 ,3);

Th is set of tests and the Pop2 axiom will be used to “e x e r c i s e ”
the im ~~tementation. First with Neu Stack bound to S and 1 bound

to 1, we wi l l  use the bod y of the Pop? axiom as a driver program

t h a t  invokes ImpLementation functions . If the left and ri ght

sides of an axiom do not return values that are judged to be

e— ~-ua L by the appropriate imp lementation function (here,

Stack Eq ua t ) , a dia gnostic message is printed indicat ing that the

a xiom has failed. This process is repeated wit h Si (an object

initialized in the TESTPO INTS section ) bound to S and 2 bound to

I , an d finalLy with Si bound to S and 3 bound to I.

In or der to achieve thi s behavior, we compile the axioms into

procedur es and the test sets into calls on the appropriate

procedures . The Pop? axiom becomes: 
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PROC Pop2 (Stack S EttType I)
IF •NOT. St ack~ quat (Pop(PuSh (S,i),IF Depth (S)~ Limi t THEN Pop(S) ELSE 5)

TH EN
WR ITE ( *** axio m Pop? failed ***#)

E N D

and the test set for Pope is translated into the following code :

CALL Pop2 (NewStack ,1)
CALL Pop2 (S1,2)

- 

CALL Pop2 (S2 ,3)

The foL Lowi ng program is the bounded stack exam p le from

Section 1 augmented with axioms and test sets. Rath er thin

repeat the originaL CLASS decLarat ion for the bounded stack type ,

we have employed the SIMPL— D USE directive which obtains the

CLASS 5 representatio n and operation interfac, information from

the file appearing as its arguement. This file must have been

pr eviousLy created by a separate compi Lation of the module

containing the bounded stack declaration. We have reproduced the

interface informa tion In the comments following the USE

directive . Notice that the axioms are parameteri zed by the type

E Lt Type, which is defined by macro definitions preceding the

ax ioms.  However ,  the tes t  se t s are g iven in t er m s of integer
values , the type bound to EltT ype during this compilation. No

test sets are give n for the axiom s Empty l , Tapi, Popi, and

De pth l . These axioms Invo lve no free variab les; the single ca l Ls

to test them are generated automaticall y.

1+ USE ~Stack 4-F

1* operationS for Stack ‘I
I~ Stack FUN C Pu sh CSta ck , INT ) *1
1* Stack FUNC P~ g (Stack) •1/* INT FUNC Top(Stack) a/
1* INT FUNC Eapty (Stack) •1
/. INT FUNC StackEquat (Stack ,Stac k) •/
1* INT FUNC Depth (Stack) •1
/. 1NT FUNC Limi t */

DEFINE True ~ 1’J Fa’se =

Eltlype ~ INT , Undefined O~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ 
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AX iOMS 1* the “functional” model *1

Em i ~ t y i :
Empty (NewStack) True;

£mpty 2 (Stac k S, ELt lyp e I):
Em pty (Push (S,T)) = FaLse;

lopi :
Top (NewStack ) Undefined;

Top2 (Stack S~ EL tType I):
Top (Push (S,I)) Z IF Depth (S) Limit

1H~ N Top (S)
ELSE I;

Popi :
Pop (NewStack) NeuStack;

Pop2 (Sta~ k S, EL t T ype I):
Pop (Push (S,I)) IF Depth (S) Limit

THEN Pop (S)
ELSE S;

De pth 1:
Depth (NewStack) = C;

Depth2 (Stack S. fttType I):
Depth (Push (S,T)) = IF D ept h ( S)  L i m i t

THEN Depth (S)
EL SE Depth (S) + 1;

Eq ua L C
StackEqual (NewStack ,NewStack) = True;

EquaLi (Stack P, Stack a , Et tType I, L tt Type J):
StackEqua L (Push (P ,i) ,(Push (Q,J))

iF Deoth (P) < Limit
THEN

I F De~~tP,(Q) < Limit
THEN

I F  I J
THEN StackEguaL (P ,Q)
EL SE Fa lse

ELSE StackEqual (Push (P,I),O)
E L S E

IF De pth (Q) ( limit
THEN StackEquaL (P ,Push (Q,J))
EL SE Stacktqual (P ,Q);

Equat2 (Stack P ,Stack Q):
StackEquat (P,Q) StackEquaUo ,P);

£qual3 (Stac k P p EL tType J) :
StackEqua l (Push P,D,NewStack) ~ False;
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TESTPOINTS i~ to be use d in the test sets *1

Stack Si, S2
INT 1

SI : Push ( Push (Push (NewStack .1) ,2) .3)
s2 := Si
1 : 4
WHILE I <~ Limi t DO

S 2 : push (s2,I)• I : I 4- 1
E N D

IESTSETS F. to “test” the ax ioms *1

Emp ty Z (Si ,?) lNew Sta ck ,1);
Top?: lNewStac~ ,3), (S?,2);Pop?: (NewStac k ,1) (~ 1 2) ($2 3)
Depth?: (NewStack.h, (~ I,b, (~2,~~);Equall: (S1 ,SI,~~,~~), (S1,S1,?,?), (S~ ,S~ ,1,g),(S2,S2,~ .O. (SI ,S2,a,,), (S1,S~ .3,?);Eq ual?: (NewStack ,SI), (Si ,NewStack), (S1 ,SZ), (52,S1);
EquaL3: (Ne wStack ,7), (S2,?);

START

The very first running version of DAISTS uncovered an error

in the implementation of Depth. The Depthl a x iom w as t r ans l a t ed
into:

I ,  .NOT. (Depth (NewStack) 0)
TH€N

WRITE (~~*** e r r o r  in axiom De p th l ~ **~~)(ND

Our originaL Depth function was implemented as follows:

INT FUNC Depth (Stack S)
RETURN (S. StackTop)

(co mpare Section 1). The Stac kTop component of a Stack object is

assigned the value —1 in ~ew Sta ck to ind ica te that the ob ject is
empty . (The index range of SINPL arrays is O..upperbound-’l.)

Thus , Depth (NewStack) returned —1 and the message that the test
data fai l ed the Depth l axiom was printed .

Th, axioms and tests cannot guarantee that the i~p teae n tat ion
is w i t h O u t  errors. Errors in the imp leme n tat i on may interact in
ways whI ch sti lL satisfy the axioms. For exam p le, if Push simply
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up dated the StackTop component of Stack objects without retaining

a ny values, the onLy axiom to faiL would be Top? since

Top (Push (S,j)) � I. Now , i f  the equa lity function for EttType

objects was also incorre ct (always returning true ), the axioms

wou ld all be satisfie d by a faulty impLementa tion. However , if

we require the user to supply enoug h test data to cover every

p art of his axioms , he may find that he cannot supply test data

to the ~qual1 axiom to reach the ELSE clause guarded by the
I

c ond 1 t ion :

Depth (P) < Li mit & Depth(Q) < Limit & 1 � J

because 1 = J. Preliminary Ideas about coverage monit oring are

pr esented in the next section.
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in conventional program testing, specifications enter in the

fo rm of ar~ “oracle ,” a means of magically obtaining the correct

results with which the test is to agree. In practice this orac le

i s  a human being examining the output, perhaps too often wi lling

to agree with the program. (This position can be justified——some

pr ograms are solving problems that can be attacked no other way.)

It is cruciaL to distinguish an oracle that can judge the Output

for 
~~~ 

input , from a “Limited o r ac t e ”—— a se t of given input—

Output pairs encoding only a part of the comp lete behavior. The

Latter can be obtained by phy sica l simulation and by hand

calculation, but when structural testing criteria are used,

Inputs are generated that may not keep within a given collection.

Testing based on pure input—output pairs has L itt l e to

recom mend it; since any test is finite, it co*~td be met by a

pro gram writ ten as a 
~~u 

statement covering the given pairs, and
oth erw -i~ e en tering a never—ending loop. The addition of

structura l test criteria, additional constraints on the

collection of tests, has its origin in avoiding such

co unte rexampLes. The simplest structural criterion is that each

and ever y statement of the tested progr am must be executed for

some input among the tests. If the every—statement crit erion is

met , then It canno t be that the program is hiding a sp ecial block
of cod e that takes some unpl easant action outside the finite test

c ollection . Put the other way, it is cer t a inly wise  to h ave use d

aL l the code in some way; entire Ly untried code can contiin
arbitraril y nasty bugs. Formally, structural criteria are
designed to Lead to ttiii~1Utr of a test——the proper ty that if
errors are not exposed, there are no errors. ~et a pr ogram P

be g i v e n  the meaning (function computed ) (P3 by its se.antic
definition , and let f be the fun ction that the pr ogram ought to

c ompute (according to the idea of some human being). Then a

colLect ion of test data D is £!1i1~I! 191 f 1f f

— 3 0 —
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( P 3 1  = f~ => (P3 f
0 0

Th i s def~ n ition (due to (Howden 1976]) makes an exhaustive test

tr i vial l y reliable. Every program has a finite reliable test,

but there is no way to judge mechanicaLly a given program P and

test data D to determine if D is reliable for P (Howden,

1 976 , Hamlet, 1977a3. By strengthening the specification to

Inclu de more Information about 
~~~ 

the pro gram must behave, or by

restr i cting the set of errors that must be detected , mechani call y

c hec kab Le reliability can be attained (Ham let 1978).

The DAISTS processor described in Section 3 provides a rich

t es t i ng vehicle. The dua l machine—processa b Le texts of axioms

an d im pLemen t ing code can make do without an oracle . When trying

a test point in an axiom , we do not know what operation values

shou ld resu lt , but we do know a relationshi p that should hold

am ong them. The virtue in this form of oracular information is

that it Is available for any and all test point s that might be

tried, not only those of a pre selected set. The drawbacks of
sp~ riou s success have been noted in Sections 2 and 3. In D*1STS ,

te s t s ca n be re qu i r e d  to satisfy structural criteria not only on
the pro gram code , but on the axioms as well . In this section we

exp (ore th~ poten tial of tests with structu ral constraints for

detectin g inconsistencies between abstra ctions the code correctL y

imp l em en t s, and abstractions that satisfy the axioms. In the

pr ocess we also hope to learn about the relationshi p of code and

axioms to the abstra ction the programmer had in mind.

Section 2 descri b es the significance of a test failure in an

axiom compiLed into code: either the imp lementation or the axiom
(or both ) - is inconsistent w ith the intuitive abstraction desired.

It is probably easiest for a person to analyze the code function—
by funct ion, and turn to the axiom only if each step in its
extended imp lementation diagram checks out. In what folLows it

is assumed that each error in code or axiom is corrected as

discovered. The resu lt of testing is then a collection of points
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4 r .hich the  a~~icm s ~
g execute successfu lly. Structural

c r i t e r i a  ar, now intr oduced to enhance the significance of the

si cces s fut test co l lect ion.

For con v ent ion a l progr am code there are path and expression

stru c t u r a l  constraints, corresponding to the control /data

d ICh o t omy. A combi nation of the t w O  can be re liable, but not

a time feasible for real programs. Hence, a number of

a~~pro~~im at ion~; to the im pr acticaL exhaust ive constraints exist.

“oni t ori n g a ~a r t icutar constraint can be accomp lished by a run—

ti m e support rout ine in DAISTS (the path constra ints are

pdr t i c u l a r l y  easy to handle), In what follows we concentrate on

th e si ;nlfi cance of constraints, not on details ~f approximations

and monitoring aLgorithms, which are strai g htforward. The

c’ -m i~ite r—ba s ed testi n g ap~.roach (Hamlet , 1977b] has the virtue

t~~at a LL testing is accom~ Lishe d by a run— time modu le , in which

the aE ,ori thm s are written In S1~~PL—D, and therefore easy to

ch an gt and to experi ’cnt with. ~e therefore expect to defer

decis ions about what and how to monitor as ton g as possible.

Path cri te ria are the easier to understand. ALL possible
inp~it s to a pro gram c ivi de into equivalence classes according to
w h i C h  control—flow path each input follows. A given test

coll e cti on meets an ~ xh~~~st1~~ ~~~~ 
çg t~ io1 1ff it incLudes

on~ m ember frcm each such equivalen ce class. The unreliability

of p ath te sti r - g (Ho w den 1976] resuLts from an i ?j?oper or

in s uff i c i ent coverage of some path—defined C L . S S .  Approx imations

to the ex haustive pat h constraint are necessar y, becau se w h e n
code cont ains loops, the number of  paths may be u’ibounded. The

siu ~~les t approximation requires each statement to be executed for

some est point.

• w ithi n axioms com pi led into code , the only analog of path

const raint s occurs when there are conditional cases, and then

• exh aust ive path testing is the same as “branch testing ”——requiring that both alternatives be taken. Except for this case ,
the test points necessari ly take the sing le path through eac h



axiom that corresponds to moving across the bottom of  its

extended imp lementation diagram. However, it may be heLpfuL to

the programmer to “c over ” one axiom at a time, and observe the

path coverag e that results w ithin the imp lementation procedures.

Expres sion constraints on code have a better axiom analog

than do path containts. AL L  poss ible inputs to a program are

divided into equivalence classes by value sequences (histories )

assigned to a single expression within the program. A given test

col lection meets an exh~ u~1!~~ t~~ 12O £2011Lt101- 
1ff it

incLudes one member from each such class. Expression constraints

are Less used in practical testing because they are harder to

appro x imate , and even the appr oximations are expensive to

moni tor. One of the simpLest approximations is that of

forbidding constan t subexpressi ons—— a set of tests is lacking if

any nonconstant part of any expression has exactly the same value

hist or y for all test points.

Since axioms are expressions, they are covered just as is
code, according to an expression constraint. An obvious

interpretation if axiom expressions rem ain constant , is that

(insofar as the tests can determine ) the trivial abstraction has
been specified. Ax iom expre ssion coverage has more significance

than coverage for code , just because there are few axiom “paths ”

t 0  consider.

The interpLay between structural constraints for axioms and

for code suggests a testing methodol ogy something Like the
fol lowing : Begin by finding test points that cover the axioms,

with as Little redund ancy as possible. The deficiencies of such

a test coLlection in code coverage indi cate parts of the code to

examine for errors (usuaL ly of the sort that the correct ly
impLemented abstractions are too comp Le x ) . If the code proves to

be correct on exam ination , seek addi tiona l test points to cover
it, and examin e the redundant coverage these points introduce in

t he axioms, suggesting that th e abstractions satisfying them are
too simpLe ,
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k~~~~~~i~~~~~~ 21 Q~ I~I~

~ork is proceeding on th e DA ISTS processor. At this writing,

the processor w I lt permit users to supply implementations,

axioms , and test points and will “exercise ” the implementation.

In the next stage of deveLo pm ent, we plan to add simple

structura l testin g criteria to check statement coverage and

exp ress ion . variabiLit y .
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